Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology

نویسندگان

  • John R Shaffer
  • Ekaterina Orlova
  • Myoung Keun Lee
  • Elizabeth J Leslie
  • Zachary D Raffensperger
  • Carrie L Heike
  • Michael L Cunningham
  • Jacqueline T Hecht
  • Chung How Kau
  • Nichole L Nidey
  • Lina M Moreno
  • George L Wehby
  • Jeffrey C Murray
  • Cecelia A Laurie
  • Cathy C Laurie
  • Joanne Cole
  • Tracey Ferrara
  • Stephanie Santorico
  • Ophir Klein
  • Washington Mio
  • Eleanor Feingold
  • Benedikt Hallgrimsson
  • Richard A Spritz
  • Mary L Marazita
  • Seth M Weinberg
چکیده

Numerous lines of evidence point to a genetic basis for facial morphology in humans, yet little is known about how specific genetic variants relate to the phenotypic expression of many common facial features. We conducted genome-wide association meta-analyses of 20 quantitative facial measurements derived from the 3D surface images of 3118 healthy individuals of European ancestry belonging to two US cohorts. Analyses were performed on just under one million genotyped SNPs (Illumina OmniExpress+Exome v1.2 array) imputed to the 1000 Genomes reference panel (Phase 3). We observed genome-wide significant associations (p < 5 x 10-8) for cranial base width at 14q21.1 and 20q12, intercanthal width at 1p13.3 and Xq13.2, nasal width at 20p11.22, nasal ala length at 14q11.2, and upper facial depth at 11q22.1. Several genes in the associated regions are known to play roles in craniofacial development or in syndromes affecting the face: MAFB, PAX9, MIPOL1, ALX3, HDAC8, and PAX1. We also tested genotype-phenotype associations reported in two previous genome-wide studies and found evidence of replication for nasal ala length and SNPs in CACNA2D3 and PRDM16. These results provide further evidence that common variants in regions harboring genes of known craniofacial function contribute to normal variation in human facial features. Improved understanding of the genes associated with facial morphology in healthy individuals can provide insights into the pathways and mechanisms controlling normal and abnormal facial morphogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Genome-Wide Association Study Identifies Five Loci Influencing Facial Morphology in Europeans

Inter-individual variation in facial shape is one of the most noticeable phenotypes in humans, and it is clearly under genetic regulation; however, almost nothing is known about the genetic basis of normal human facial morphology. We therefore conducted a genome-wide association study for facial shape phenotypes in multiple discovery and replication cohorts, considering almost ten thousand indi...

متن کامل

Genome-wide association study of facial morphology reveals novel associations with FREM1 and PARK2

Several studies have now shown evidence of association between common genetic variants and quantitative facial traits in humans. The reported associations generally involve simple univariate measures and likely represent only a small fraction of the genetic loci influencing facial morphology. In this study, we applied factor analysis to a set of 276 facial linear distances derived from 3D facia...

متن کامل

Genome-Wide Association Study of Seedling Characteristics in Bread Wheat Cultivars Under Normal and Salt Stress Conditions

In order to identify loci controlling seedling morpho-physiologic characteristics in 88 bread wheat cultivars, a greenhouse experiment based on simple alpha lattice was conducted under both normal and 120 mM (12 ds/m) salt stress condition of the Faculty of Agriculture, Urmia University in 2020-2021 cropping season. Chlorophyll a, b and carotenoid content, proline, plant fresh and dry weight, p...

متن کامل

Unveiling the genetic loci for a panicle developmental trait using genome-wide association study in rice

Panicle size has a high correlation with grain yield in rice. There is a bottleneck to identify the additional quantitative trait loci (QTL) for panicle size due to the conventional traits used for QTL mapping. To identify more genetic loci for panicle size, a panicle developmental trait (LNTB, the length from panicle neck-knot to the first primary branch in the rachis) related to panicle size ...

متن کامل

Synthesizing genome-wide association studies and expression microarray reveals novel genes that act in the human growth plate to modulate height.

Previous meta-analysis of genome-wide association (GWA) studies has identified 180 loci that influence adult height. However, each GWA locus typically comprises a set of contiguous genes, only one of which presumably modulates height. We reasoned that many of the causative genes within these loci influence height because they are expressed in and function in the growth plate, a cartilaginous st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016